

4 Psychologie der menschlichen Informationsverarbeitung

4.1 Psychologie der visuellen Wahrnehmung

- Gestaltgesetze
- Tiefenwahrnehmung
- Bewegungseindruck
- Optische Täuschungen

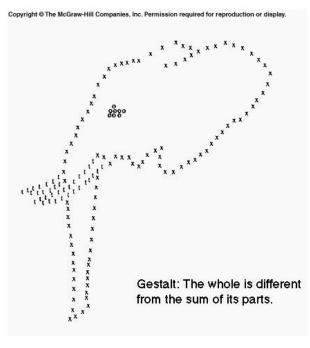
4.2 Gedächtnis und mentale Modelle

- Interne Codes des Gedächtnisses
- ACT*-Modell
- Mentale Modelle

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15


Folie 4.1

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1 Psychologie der visuellen Wahrnehmung

- Man sieht, was man zu sehen gewohnt ist.
- Man sieht, was man zu sehen erwartet.
- Auswertung der physischen Wahrnehmung durch das Exekutivsystem

4.1.1 Gestaltgesetze (1)

Gestalttheorie

- psychologische Studien ab 1920
- Kognitionsforschung ("Berliner Schule")
- Max Wertheimer (1880 1943)
 - Untersuchungen zur Lehre von der Gestalt Psychologische Forschung, Band 4, 1923, Seite 301 bis 350

Gestaltgesetze

- Erfahrungsregeln zur Wirkung von
 - Anordnung
 - Formgebung
 - Farbwahl
- über 100 "Gesetze"

Max Wertheimer um 1914 Quelle: http://www.ffmhist.de/ffm33-45/portal01/ portal01.php?ziel=t hm uninatwissaeuberung

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15 Fo

Folie 4.3

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.1 Gestaltgesetze (2)

Anwendung im Bildschirmlayout

- Herstellung oder Vermeidung von Bedeutungszusammenhängen
- Verbesserung der Wahrnehmbarkeit
- Erleichterung des Suchens und Erkennens von Daten
- Schaffung eines ruhigen ausgeglichenen Erscheinungsbildes
- Verkürzung von Reaktions- und Entscheidungszeiten (bis zu 30%)

4.1.1 Gesetz der Nähe

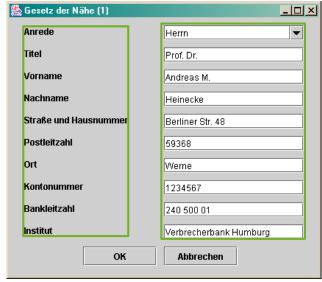
- räumliche Nachbarschaft
- zeitliche Nachbarschaft

1,0	4,1	5,2	2,3	4,1		1,0	4,1	5,2	2,3	4,1
3,3	2,4	1,4	4,5	4,3						
4,5	5,3	2,3	1,2	3,2		3,3	2,4	1,4	4,5	4,3
3,1	3,4	4,2	5,1	2,2						
5,2	2,3	1,5	3,2	5,1		4,5	5,3	2,3	1,2	3,2
						3,1	3,4	4,2	5,1	2,2
						5,2	2,3	1,5	3,2	5,1

Benachbarte Elemente werden als zusammengehörig wahrgenommen – auch wenn sie sich in Form, Größe und Farbe unterscheiden.

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de


Stand: 15.10.15 Folie 4.5

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.1 Anwendung des Gesetzes der Nähe

- Zusammengehörigkeiten durch Nähe betonen
- Unterschiede durch Distanz trennen

4.1.1 Gesetz der Gleichartigkeit

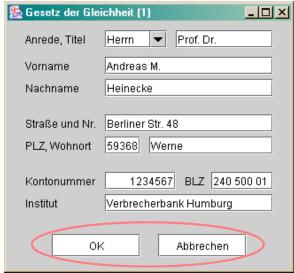
- Gleichheit oder Ähnlichkeit von
 - Farbe
 - Helligkeit
 - Größe
 - Orientierung
 - Form

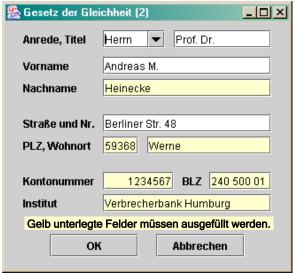
Elemente, die einander gleichen, werden als zusammengehörig wahrgenommen.

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15


Folie 4.7



Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.1 Anwendung des Gesetzes der Gleichheit

- Gleichartige Elemente gleichartig darstellen
- Unterschiede durch unterschiedliche Darstellung betonen

4.1.1 Zusammenwirken von Gestaltgesetzen

- Beeinflussung der Wirkung durch
 - Kombination mehrerer Gesetze (z.B. Nähe und Gleichheit)
 - mehrfaches Auftreten eines Gesetzes
 (z.B. Gleichheit der Farbe und Gleichheit der Form)
- Verstärkungseffekte möglich
- Abschwächungseffekte möglich
- Kombination beim Layout
 - möglichst eindeutige Wirkung
 - möglichst widerspruchsfreie Wirkung

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.9

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.1 Gesetz der Nähe und Gesetz der Gleichheit (1)

Gesetz der Nähe soll Zeilen darstellen

0000	00000	$\bigcirc \bigcirc \bigcirc \bigcirc$
00000		$\circ \bullet \circ \bullet$
0000	0000	$\circ \bullet \circ \bullet$
0000		$\circ \bullet \circ \bullet$

Verstärkung durch Gleichheit

00000

Abschwächung / Aufhebung durch Gleichheit

00000

4.1.1 Gesetz der Nähe und Gesetz der Gleichheit (2)

Anwendungsbeispiel Tabelle

Gerät	Jahr	Auflösung horizontalx vertikalx Farben
Apple II	1977	280 x 192 x 6
Commodore VC 20	1981	184 x 176 x 1
IBM CGA	1981	320 x 200 x 4 (aus 16)
		640 x 200 x 2 (aus 16)
Commodore CBM 4064	1982	320 x 200 x 1
Commodore C 64	1982	320 x 200 x 1
		160 x 200 x 4
Hercules (für IBM-PC)	1982	729 x 348 x 1
Apple IIe	1983	360 x 192 x 8
Apple Lisa	1984	720 x 360 x 1
Apple Macintosh	1984	512 x 342 x 1
IBM EGA	1984	640 x 350 x 16 (aus 64)
		640 x 200 x 16 (CGA-Farben)
Commodore C 128	1985	640 x 200 x 1
		160 x 200 x 16
Atari ST	1985	640 x 400 x 1
		640 x 200 x 4
		320 x 200 x 16
IBM PGA	1985	640 x 480 x 256
Apple IIgs	1986	640 x 200 x 1
		320 x 200 x 8
Commodore Amiga 1000	1986	640 x 256 x 16
		640 x 512 x 16 (aus 4096)
IBM VGA	1987	640 x 480 x 16 (aus 64)

ungünstige Wirkung des Gesetzes der Nähe

Gerät	Jahr	Auflösung horizontalx vertikalx Farben
Apple II	1977	280 x 192 x 6
Commodore VC 20	1981	184 x 176 x 1
IBM CGA	1981	320 x 200 x 4 (aus 16)
		640 x 200 x 2 (aus 16)
Commodore CBM 4064	1982	320 x 200 x 1
Commodore C 64	1982	320 x 200 x 1
		160 x 200 x 4
Hercules (für IBM-PC)	1982	729 x 348 x 1
Apple IIe	1983	360 x 192 x 8
Apple Lisa	1984	720 x 360 x 1
Apple Macintosh	1984	512 x 342 x 1
IBM EGA	1984	640 x 350 x 16 (aus 64)
		640 x 200 x 16 (CGA-Farben)
Commodore C 128	1985	640 x 200 x 1
		160 x 200 x 16
Atari ST	1985	640 x 400 x 1
		640 x 200 x 4
		320 x 200 x 16
IBM PGA	1985	640 x 480 x 256
Apple IIgs	1986	640 x 200 x 1
		320 x 200 x 8
Commodore Amiga 1000	1986	640 x 256 x 16
		640 x 512 x 16 (aus 4096)
IBM VGA	1987	640 x 480 x 16 (aus 64)

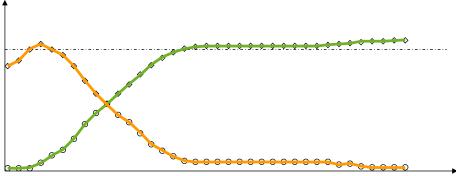
Korrektur durch Gesetz der Gleichheit

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Folie 4.11

Wissen. Was praktisch zählt.

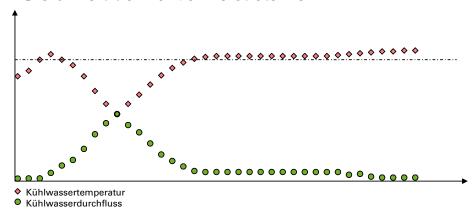

Stand: 15.10.15

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.1 Gesetz der guten Fortsetzung (1)

Fortsetzung erfolgt

- räumlich oder zeitlich
- möglichst einfach, harmonisch, gesetzmäßig


- ♦ Kühlwassertemperatur
- O Kühlwasserdurchfluss

Elemente, die räumlich oder zeitlich in einfacher, harmonischer, gesetzmäßiger Folge angeordnet sind, erscheinen als zusammengehörig und damit als Figur.

4.1.1 Gesetz der guten Fortsetzung (2)

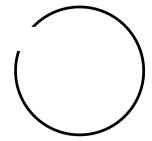
- Zusammenwirken mit Gesetz der Gleichheit
 - Gleichheit der Form meist schwächer
 - Gleichheit der Farbe meist stärker

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

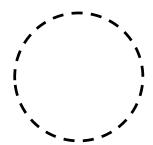
http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.13



Wissen. Was praktisch zählt.

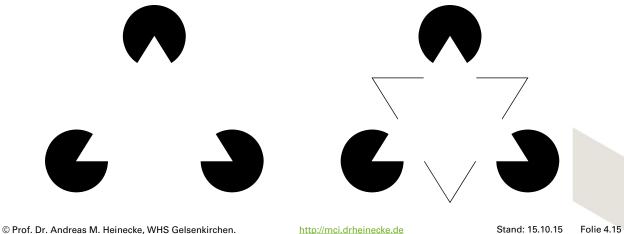

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.1 Gesetz der Schließung / Geschlossenheit (1)

- Vervollständigung von Konturen
 - Erfahrungswissen über mögliche Figuren
 - Unterscheidung zwischen Innen und Außen
 - Unterscheidung zwischen Figur und Hintergrund

Vervollständigung zum Kreis "mit Lücke"

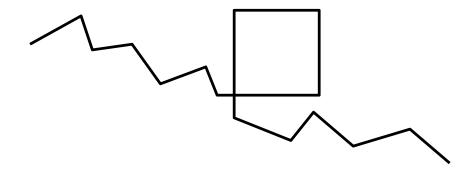
Vervollständigung zum Kreis "gestrichelt"


Nur 60% des Kreises sind tatsächlich vorhanden!

4.1.1 Gesetz der Schließung / Geschlossenheit (2)

Erkennung von Konturen

- Bildung vertrauter Formen auch aus Bruchstücken
- Zwang zur Kontur
 - z.B. Kanizsa Dreieck



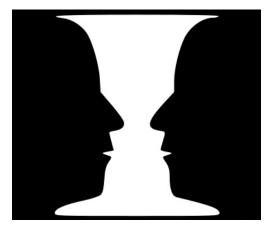
Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.1 Prinzip oder Gesetz der guten Gestalt

- Zusammenwirken der Gestaltgesetze
 - Entstehung möglichst einfacher, regelmäßiger, symmetrischer, geschlossener Figuren
 - Unterscheidung zwischen Figur und Hintergrund

4.1.1 Vexierbild (1)


Kippfigur

 bei nicht eindeutiger Unterscheidung zwischen Figur und Hintergrund

Rubin-Vase

Quelle: http://commons.wikimedia.org/wiki/File:Multistability.svg

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15 Folie 4.17

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.1 Vexierbild (2)

- Anwendungsbeispiel Säulendiagramm
 - Säulen und Hintergrund sollten sich deutlich unterscheiden ...

Die Säulen sind schwarz, sie wachsen von der Nulllinie nach unten!

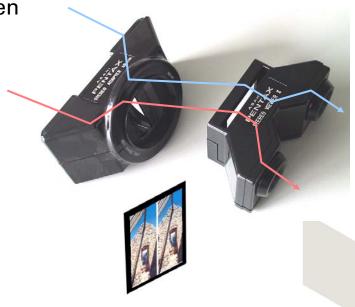
4.1.2 Tiefenwahrnehmung

- Stereoskopisches Sehen
- Statische Perspektive
- Verdeckungsauswertung
- Schattenauswertung
- Gradientenauswertung

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15 Folie 4.19


Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.2 Stereoskopisches Sehen (1)

 nur mit zwei sehtüchtigen Augen

- jedes Auge braucht sein eigenes Bild
- Auswertung von
 - Vergenz (Winkel zwischen den Sehrichtungen)
 - Querdisparation (Abweichung der beiden Bilder)

4.1.2 Stereoskopisches Sehen (2)

- Vergenz kann willentlich eingestellt werden
 - Betrachtung von Stereobildern ohne Hilfsmittel
 - Autostereogramme

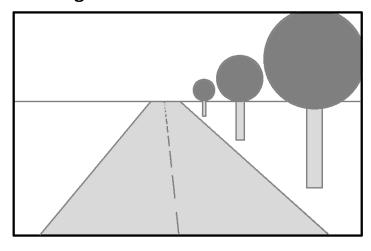
Quelle: T. Ditzinger, Illusionen des Sehens. Südwest Verlag, München 1998.

Quelle: Das magische Auge I, Kartenspiel, Amigo Spiel+Freizeit GmbH, Rödermark 1995

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Folie 4.21


Wissen. Was praktisch zählt.

Stand: 15.10.15

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.2 Statische Perspektive (1)

- trapezförmige Konturen => sich entfernende Parallelen
- Größenunterschiede => Entfernungsunterschiede
- kulturelle Errungenschaft der Renaissance

4.1.2 Statische Perspektive (2)

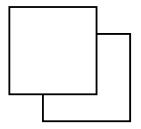
Perspektivische Täuschungen

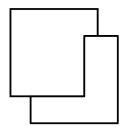
© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

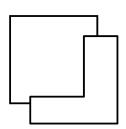
http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.23

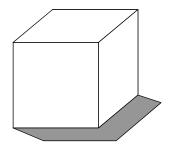


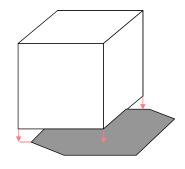

Wissen. Was praktisch zählt.


Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.2 Verdeckung

- vollständige Konturen weiter vorne / weiter oben
- Ausnutzung der Gestaltgesetze zur Bildung der Konturen





4.1.2 Schattenwurf (1)

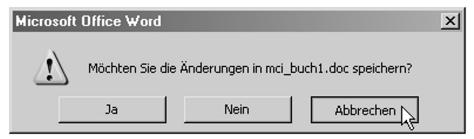
- räumliche Zuordnung
 - von Objekten zu Ebenen
 - von Objekten zueinander

Können Würfel schweben?

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15


Folie 4.25

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.2 Schattenwurf (2)

- Licht von links oben
- Die Schaltflächen links werfen Schatten.
 - => Sie ragen aus der Fläche heraus.
- Die Schaltfläche rechts wirft keinen Schatten.
 - => Sie ist bündig mit der Oberfläche, also hineingedrückt.

4.1.2 Gradienten

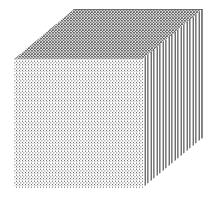
- Texturen
 - enge Textur weiter hinten
- Kontraste
 - geringerer Kontrast weiter hinten
- Sättigung
 - geringe Sättigung weiter hinten
- Farben
 - Blau-Verschiebung in der Entfernung

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.27



Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.2 Generierung von Oberflächen

- Ableitung aus Konturen
- Ableitung aus Texturen
- Zusammenstellung zu Körpern

4.1.3 Bewegungseindruck (1)

- Physische Eigenschaften des Auges berücksichtigen
 - Zeitliche Auflösung 50 ms
 - Betrachtung der Welt mit einer Frequenz von 20 Hz
- Einzelbilder mit geringen Unterschieden
 - 20 bis 25 Bilder pro Sekunde für fließende Bewegung
 - Film / Video
 - höhere Frequenz nicht nötig
 - 3 bis 5 Bilder pro Sekunde als ruckende Bewegung
 - Videokonferenzen
 - Bildtelefonie

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.29

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.3 Bewegungseindruck (2)

- Räumlich-zeitlicher Sprung
 - Verschwinden und Wiederauftauchen
 - Objekt verschwindet an Punkt A
 - Objekt erscheint nach 30 bis 60 ms an Punkt B
 - Eindruck einer Bewegung zwischen A und B

4.1.4 Optische Täuschungen

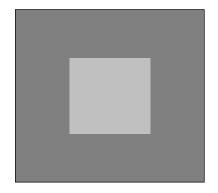
- Psychische Prozesse der Wahrnehmung können Täuschungen bewirken
 - wahrgenommener Eindruck stimmt nicht mit der Realität überein
- Ursachen
 - widersprüchliche Informationen
 - Überbelastung des visuellen Systems
 - Unterbelastung des visuellen Systems
- Mensch-Computer-Interaktion
 - optische Täuschungen bei Bildschirm-Layout vermeiden

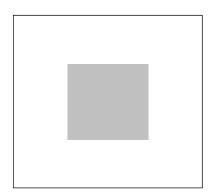
© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15 Fol

Folie 4.31

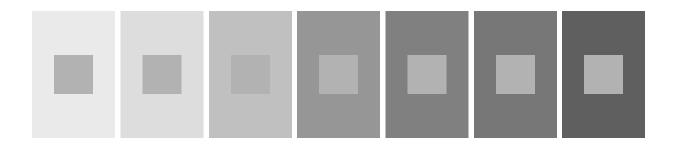



Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.4 Farbtäuschungen (1)

 Farben und Helligkeiten werden im Vergleich zur Umgebung wahrgenommen



Die mittleren Quadrate haben die gleiche Helligkeit und sind gleich groß.

4.1.4 Farbtäuschungen (2)

 Vorsicht bei Verwendung von Farben / Helligkeiten zur Kodierung

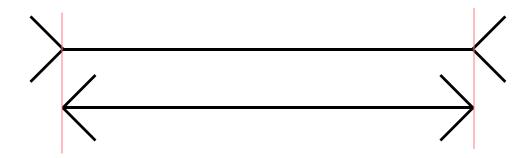
Auch hier: Die mittleren Quadrate haben die gleiche Helligkeit und sind gleich groß.

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.33



Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.4 Längentäuschungen (1)

- Beispiel: Müller-Lyer'sche Täuschung 1889
- Beeinflussung einer Schätzung durch andere Objekte

4.1.4 Längentäuschungen (2)

- Beispiel: Oppel-Kundt'sche Täuschung 1895
 - wichtig für die Anzeigegestaltung

Die großen senkrechten Striche liegen jeweils gleich weit auseinander.

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.35

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.4 Längentäuschungen (3)

Perspektivische Verzerrung

4.1.4 Größentäuschungen

- Beispiel: Ebbinghaus'sche Täuschung
 - wichtig für die Visualisierung von Werten in Diagrammen

Die gelben Tortenstücke sind gleich groß.

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

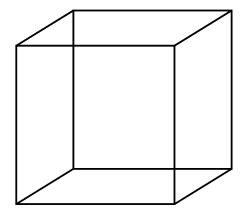
Folie 4.37

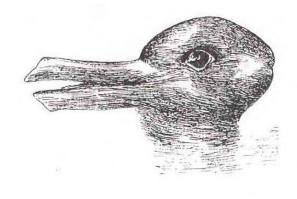


Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.4 Formtäuschungen


- Überlagerung verschiedener Formen
- Verzerrung der Wahrnehmung



4.1.4 Kippfiguren

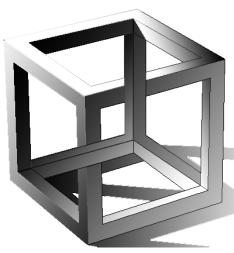
- Gleichwertige Alternativen
- ähnlich Vexierbild

Hasenente aus Jastrow, J. (1899). The mind's eye. Popular Science Monthly, 54, 299-312. Quelle:http://commons.wikimedia.org/wiki/File:Duck-Rabbit illusion.jpg

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

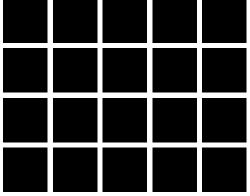
Stand: 15.10.15 Folie 4.39


Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.1.4 Unmögliche Objekte

 Widersprüchliche Informationen bei der Ableitungen von Kanten und Oberflächen



Quelle: http://commons.wikimedia.org/wiki/File:Escher Cube.png

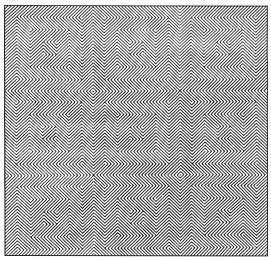
4.1.4 Physiologisch bedingte Täuschungen (1)

- Scharfe Kontraste → Geisterbilder
 - Randkontrastverstärkung
 - Hermannsches Gitter

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

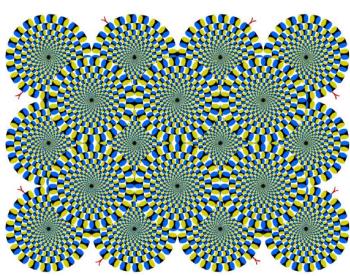
http://mci.drheinecke.de

Folie 4.41


Wissen. Was praktisch zählt.

Stand: 15.10.15

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester


4.1.4 Physiologisch bedingte Täuschungen (2)

Fehlende Fixationspunkte → Bewegungseindruck

Quelle: T. Ditzinger, Illusionen des Sehens. Südwest Verlag, München 1998.

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

Rotating Snakes von Akiyoshi KITAOKA Quelle: www.ritsumei.ac.jp/~akitaoka/PDrift.pdf
Erklärung: www.psy.ritsumei.ac.jp/~akitaoka/PDrift.pdf

4.2 Gedächtnis und mentale Modelle

Wissenserwerb

- Wissen als Voraussetzung für die Ausführung von Aufgaben
- Speicherung von Information im Gedächtnis in geeigneter Form
- Beziehungen zwischen vorhandenen Informationen
- komplexe Modelle der Außenwelt

Information

- ist jeder Unterschied, der etwas ausmacht.
 - G. Bateson: Geist und Natur. Eine notwendige Einheit. Suhrkamp TB Wissenschaft, Frankfurt 1987.
- is any difference that makes a difference.
 - G. Bateson: Mind and Nature. A Necessary Unity. Bantam Books, Toronto 1980.

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

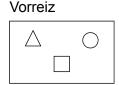
Stand: 15.10.15 Folie 4.43

Wissen. Was praktisch zählt.

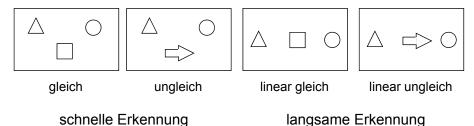
Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.2.1 Interne Codes des Gedächtnisses

Experimente von Santa 1977


- Unterschiede zwischen visueller und verbaler Repräsentation
- Versuchsablauf
 - Einprägen einer visuellen Vorgabe (Vorreiz)
 - Präsentation unterschiedlicher visueller Darstellungen (Prüfreize)
 - Entscheidung, ob Prüfreiz die gleichen Elemente wie Vorreiz enthält
- Vorreiz und Prüfreize
 - als geometrische Objekte
 - als Wörter

J. L. Santa: Spatial Transformations of Words and Pictures. In: Journal of Experimental Psychology: Human Learning and Memory, Vol. 3, No. 4, 1977



4.2.1 Experiment von Santa (1)

Versuch 1

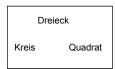
Prüfreiz

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

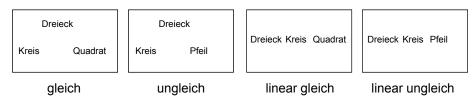
http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.45


Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester


4.2.1 Experiment von Santa (2)

Versuch 2

Vorreiz

Prüfreiz

langsame Erkennung

schnelle Erkennung

4.2.1 Experiment von Santa (3)

Ergebnisse

- Geometrische Objekte
 - Schnelle Erkennung bei gleicher Anordnung der Elemente
 - Elemente des Vorreizes im Gedächtnis visuell mit räumlichen Bezug zueinander gespeichert
 - Bei abweichender Anordnung der Elemente räumliche Umordnung (vor dem "geistigen Auge") für den Vergleich nötig
- Wörter
 - Schnelle Erkennung bei linearer Anordnung der Wörter
 - Wörter des Vorreizes im Gedächtnis als Ketten ohne räumlichen Bezug zueinander gespeichert
 - Bei räumlich verteilter Anordnung der Wörter lineare Umordnung (vor dem "geistigen Auge") für den Vergleich nötig

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

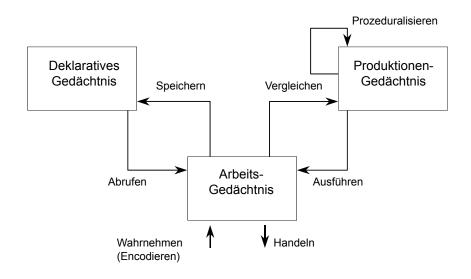
http://mci.drheinecke.de

Stand: 15.10.15 Folie 4.47

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.2.1 Experiment von Santa (4)


Schlussfolgerungen

- Unterschiedliche Codierungen
 - Geometrische Objekte in räumlichem Zusammenhang
 - Wörter als Ketten
- Unterschiedliche Erkennungsleistungen
 - besser, wenn Anordnung der Codierung entspricht
- Folgerungen für Bildschirmgestaltung
 - Verbalobjekte linear in Zeilen und Spalten
 - in kulturspezifischer Leserichtung
 - Grafische Elemente in gleich bleibender geometrischer Anordnung
 - Gestaltgesetze beachten

4.2.2 ACT*-Modell

Adaptive Control of Thought

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.49

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.2.2 ACT*-Modell: Deklaratives Gedächtnis

- Inhalt: Wissen
 - sprachlich formulierbar
 - Prädikat-Argument-Struktur: propositionales Netzwerk
 - Objekte
 - konkrete Objekte
 - abstrakte Objekte
 - Eigenschaftskonzepte
 - Verbindungen
 - Klassenrelationen
 - Eigenschaftsrelationen
 - Verbindungen zu sensorischen Vorstellungen
 - Bildsystem und andere Sensorik-Speicher

4.2.2 ACT*-Modell: Produktionen-Gedächtnis

- Inhalt: Können (≈ erlernte Fähigkeiten)
 - Handlungsroutinen
 - einfache motorische Vorgänge, z.B. Gehen
 - komplexe motorische Fähigkeiten, z.B. Blindschreiben auf Tastatur
 - kognitive Routinen, z.B. Einmaleins
 - Wenn-Dann-Verknüpfungen (Produktionen)
 - Wahrnehmung einer Situation
 - Vergleich der Situation mit allen Wenn-Teilen
 - Auswahl des passenden Dann-Teils
 - gemäß "bester" Übereinstimmung

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.51

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.2.3 Mentale Modelle (1)

- Wissen im Langzeitgedächtnis
 - Wissensbestände als mentale Modelle der Außenwelt
- Kommunikation als Abgleich mentaler Modelle
- Denken als bewusstes Arbeiten mit mentalen Modellen
 - Handlung zu wahrgenommener Situation aus verschiedenen mentalen Modellen abgeleitet
- in der Kognitionspsychologie als Modell zum Verstehen von Denkprozessen

S. Dutke: Mentale Modelle - Konstrukte des Wissens und Verstehens, Kognitionspsychologische Grundlagen für die Software-Ergonomie. Verlag für Angewandte Psychologie, Göttingen 1994

4.2.3 Mentale Modelle (2)

- Semantische Modelle
 - allgemeine Aussagen
 - "Autos haben vier Räder."
- Episodische Modelle
 - spezielle Sachverhalte im Einzelfall
 - "Unserm Nachbar sein Auto hat gezz Alufelgen, boah, ey!"

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.53

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

4.2.3 Mentale Modelle (3)

- Unterschiedliche kulturabhängige mentale Modelle
 - egozentrische Weltsicht
 - links, rechts, vorne, hinten
 - geozentrische Weltsicht
 - · östlich, südlich, westlich, nördlich
- Probleme bei Internationalisierung

4.2.3 Kognitive Ökonomie

- Erinnern und Nachdenken als Vorgang der Rekonstruktion von Wissen
- Kodierung und Speicherung mit dem Ziel einfacher Rekonstruktion
 - aus möglichst einfachen Grundelementen
 - nach möglichst einfachen Grundregeln
- Einordnung in bestehende Modelle, wenn irgend möglich
 - Verwerfen und Neuentwickeln von Modellen aufwendig
 - nur wenn es gar nicht mehr anders geht, z.B.
 - Planetenbahnen sind Kreise
 - Kreise haben Epizykel
 - Epizykel haben Epi-Epizykel
 - → Planetenbahnen sind Ellipsen

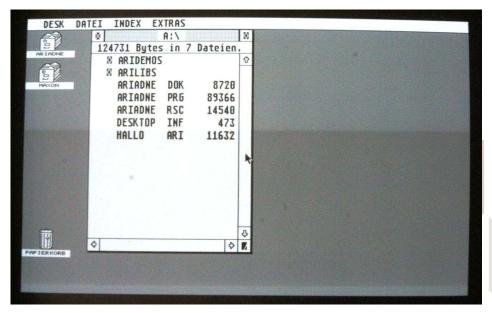
© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15 Folie 4.55

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester


4.2.3 Metaphern

- Motivation: kognitive Ökonomie
- Metapher: Übertragung mentaler Modelle auf andere Anwendungsbereiche
 - z.B. Desktop-Metapher: Übertragung des mentalen Modells konventioneller Schreibtischtätigkeit auf Büroarbeit am Bildschirm
- bei Gestaltung interaktiver Systeme
 - Nutzung vorhandener mentaler Modelle
 - nicht das Erarbeiten neuer mentaler Modelle erzwingen
 - Metaphernbrüche vermeiden

A4.2 Metaphernbrüche

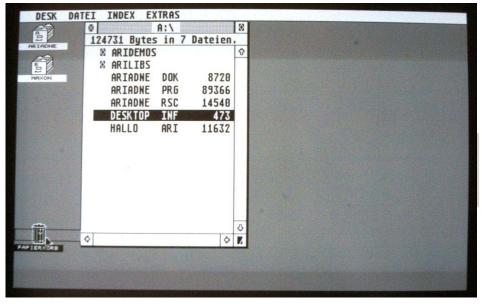
Desktop-Metapher 1985

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.57



Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

A4.2 Metaphernbrüche

Löschen durch Ziehen auf Piktogramm

A4.2 Metaphernbrüche

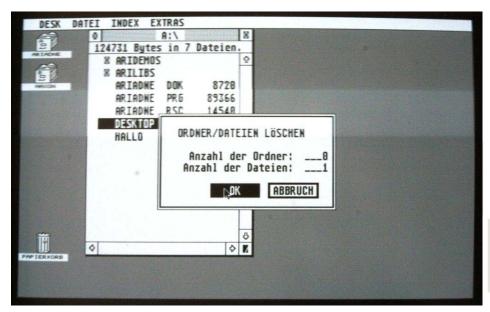
Nachfrage beim Löschen

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

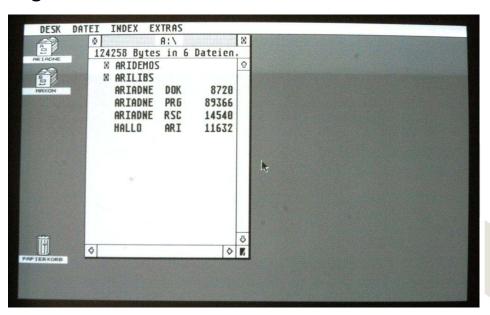
Folie 4.59



Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

A4.2 Metaphernbrüche


Löschen bestätigen

A4.2 Metaphernbrüche

Datei ist gelöscht

© Prof. Dr. Andreas M. Heinecke, WHS Gelsenkirchen.

http://mci.drheinecke.de

Stand: 15.10.15

Folie 4.61

Wissen. Was praktisch zählt.

Mensch-Computer-Interaktion WS 2015/2016 - Alle Bachelor-Studiengänge der Informatik - 1. Semester

A4.2 Metaphernbrüche

Doppelklick auf Piktogramm

